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Shelves and the Korteweg-de Vries equation 

By C. J. KNICKERBOCKER AND A L A N  C. NEWELL 
Department of Mathematics and Computer Science, Clarkson College, 

Potsdam, NY 13676 

(Received 14 November 1978 and in revised form 1 October 1979) 

An extension of the analytical results of Kaup & Newel1 (1978) concerning the effect of 
a perturbation on a solitary wave of the Korteweg-de Vries equation is given and 
numerical studies are conducted to verify the conclusions. In all cases, the numerical 
results agree with the results predicted by the theory. The most striking feature of the 
perturbed flow is the presence of a shelf in the lee of the solitary wave whose role is to 
absorb (provide) the extra mass which is created (depleted) by the perturbation. 

1. Introduction and discussion 
The problem of the propagation of a shallow-water solitary wave in a canal of 

slowly varying depth has been the subject of several papers in the recent literature. 
Although the changing depth causes reflexions (Peregrine 1967; Miles 1979); to a good 
approximation the unidirectional propagation is well described by the perturbed 
Korteweg-de Vries equation (PKdV) (Johnson 1973a; Kakutani 1971), 

qt+6qq,+g.,,, = -r(t)q, o c r G 1.  (1.1) 

In  the context of water waves, the local depth is hD(e*X/h) + ehN(dX/h ,  dgih-iT) 
with X and T the dimensional space and time co-ordinates respectively; the co- 
ordinate x is the local retarded time 

is a measure of the distance along the channel from the point where the depth be- 
gins to change. The right-going component of the disturbed elevation N is given by 
QD2q(x,t) and r(t) is 90,/4D which is assumed small; namely D changes slowly 
with respect to the length scale of the disturbance. 

It is natural to exploit the smallness of r(t) and to write as a first approximation the 
solution to ( 1 . 1 )  in terms of the solution of the unperturbed problem allowing those 
quantities which are constants of the latter to  vary slowly in time. Ot t  & Sudan (1970), 
assuming that the basic solution has the form of a soliton 

q(z, t )  = 2~,1~sech~q(z-  Z), Z, = 4r2 (1.2) 

and using the conservation law (energy) 

W 

q2dx = - 2r(t)/  qzdx, 
at - W  
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found that q( t )  satisfies T t  = - 8 h  (1.4) 

which we shall see is a correct result. They did not explain, however, the fact that 
neither of the expressions for conservation of mass (here we speak of conservation of 
mass in the sense of the KdV equation; in the water wave context some of the actual 
mass is reflected), 

2 at Im - -m qdx = - r(t)Icc -cc qdx, (1.5) 

nor of first moment 

q2dx- I ‘ ( t ) S w  xqdx, 
-cc 

are satisfied to leading order. Each of the relations (1.3),  (1.5), (1.6) may be integrated 
exactly (Leibovich & Randall 1971)) 

M ( t )  = qdx = M(t,)exp (1.7a) s, 
(1.7b) 

and 

( 1 . 7 ~ )  

Several authors (Grimshaw 1970, 1971; Johnson 1973b; Leibovich & Randall 1973) 
have examined the propagation of a solitary wave over an uneven bottom topography 
in some detail. Johnson (1973b) and Leibovich & Randall (1973) work with (1 .1 )  
directly and attempt to find an asymptotic representation of the solution in the form 

(1.8) 

where (T, 0 < c < (T < 1, is a measure of the amplitude of r(t) and qo(x, t ) ,  the leading 
approximation, is given by (1.2). By demanding that the asymptotic series (1.8) 
remains a uniformly valid description of the solut’ion q(x, t )  over long time ((T-,), they 
found that ~ ( t )  obeys (1.4). However, they were unable to find a solution ql(x, t )  which 
tends to zero both as x - f c o  and x+ - co. In  fact, they found that, as x - f  -a, 
q1+r/3yu,  which renders (1.8) non-uniform and seems to indicate that the mass 

q(x, t )  = qo(”, t )  + aq,(x, t )  + . . . , 

is infinite. Clearly there is something non-uniform about the expansion (1.8), a point 
to which we will return. Nevertheless, as we shall see, the results are almost correct and 
indeed a shelf does form behind the solitary wave. However, it  has a finite range, a fact 
observed numerically by Leibovich & Randall ( 1973) but not explained theoretically. 

The dilemma of infinite mass and the role of the shelf was first explained by Kaup & 
Newell (1978) (hereinafter referred to as KN) who used a totally different method 
(also used by Karpman & Maslov (1977); we should also mention that some of these 
results were obtained by KO & Kuehl (1978) by a direct method after they were 
familiar with the results of Kaup & Newell). They exploited the fact that the unper- 
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turbed equation (1.1) is exactly integrable. By exactly integrable, we mean the follow- 
ing. The KdV equation is an infinite-dimensional Hamiltonian system (Gardner 197 1 ; 
Zakharov & Faddeev 1971; Flaschka & Newel1 1975) which may be written 

H ='la (q:-2q3)dx 
a SH 

qt = 
2 -a 

and S/Sq is the variational derivative. The inverse scattering transform (Gardner et al. 
1967, 1974), is a canonical transformation (preserves the form of Hamilton's equa- 
tions) which carries the old co-ordinates q(x, t ) ,  - co < x < co, to new ones which are 
defined by the scattering data S, 

fl = {(Yk, c k  = i7,)1?=17 R(5)7 <real} ( 1.10a) 

of the eigenvalue problem 

$zz+(p+q(x , t ) )qI .  = 0, -a < x <a. (1.106) 

In  S, the quantities 7, are the bound-state eigenvalues, the yk  are the normalization 
constants for the corresponding eigenfunctions and R(<) is the reflexion coefficient. If 
q(x,  t )  evolves according to the KdV equation (or any member of the KdV family), then 
the functions - 27; and ( - 2</7r) In ( 1  - 1BI2) are action variables and therefore 
constants of the motion; their angle counterparts, which change linearly in time, are 
proportional to  Iny, and argB(5) respectively, and the Hamiltonian H in the new 
co-ordinates is an additive function of the action variables. Each rk gives rise to a 
soliton which when physically separated from the other solution components has the 
form 271; sech2 qk(x  - x k )  with Zkt = 47;, where y, = 2iykexp [ 2 7 , 4 .  Thus the action 
variable 71 prescribes the constant amplitude, shape and speed of the soliton; the 
angle variable y or X defines its position. The function R(<), the reflexion coefficient, 
measures the degree to which the continuous spectrum is excited. For a pure soliton 
state or reflexionless potential q(x,  t ) ,  R(5) = 0. In  general, however, q(x,  t )  is expressed 
as a series in terms of the squared eigenfunctions of ( l . iOb) ,  wherein contributions 
from both the continuous and discrete spectra are included, 

(1 .11 )  

The solution component corresponding to the continuous spectrum gives rise to that 
portion of the solution which is oscillatory and dispersive in nature. We can therefore 
think of the KdV equation as being separated into its various normal modes ($-", $:) 
by the inverse scattering transform. 

The effect of a perturbation is to render ( 1 . 1 )  no longer exactly separable. Instead 
the normal modes can become mixed; an initial state consisting only of solitons can 
stimulate radiation and in certain cases vice versa. If the perturbation term is small, 
then it is natural to treat the system by writing down the equations for t h e  rates of 
change of the action variables and allowing the leading-order approximations of the 
latter to vary slowly so as to suppress any non-uniformities appearing in the pertur- 
bation expansions for these quantities. This is the method used by KN to analyse the 
effects of various typical perturbations on the canonical equations of inverse scattering 
theory and is a natural generalization of classical perturbation methods for finite- 
dimensional Hamiltonian systems. 



806 C .  J .  Knickerbocker and A .  C. Newell 

The principal new result of the KN approach is the resolution of the infinite mass 
dilemma. What happens is that the continuous spectrum is excited by a resonance due 
to the interaction between the soliton and the perturbation. The quantity CR(5) 
develops a Dirac delta-function behaviour a t  5 = 0. The corresponding structure in 
physical space is a shelf of almost constant height which stretches between the 
position ( x  = 0 )  of the soliton when the perturbation was just switched on and the 
solitary wave's present position. In the original co-ordinate frame, the shelf stretches 
from the soliton to the position to which an infinitesimal disturbance would have 
travelled from the point where the topography first changed. As the solitary wave 
moves, new shelf (if J? > 0, it is a shelf of depression, if r < 0 of elevation) is con- 
tinuously formed and the extra mass depleted or created is exactly the amount needed 
to satisfy (1 .7  a )  and (1 .7  c ) .  Although it was not originally noted by KN, the amplitude 
of the shelf continues to evolve after its initial formation due to the influence of the 
perturbation, a point observed by the present authors (Newell 1978) and independently 
by Miles (1979). The transition between the shelf and the q = 0 state a t  x = 0 is 
achieved through a series of decaying oscillations (the integral of an Airy function). 

Before we give the analytical and numerical results in the next two sections, we 
make the following remarks. The first concerns the connexion between the KN 
approach and the straightforward method of perturbing (1.1) directly to obtain 

(1.12a) 

(1 .12b)  

and so on. The question now arises as to how to solve ( 1.12 b) .  If qo(x, t )  is a solitary wave 
with phase 8 = x -  /4q2dt and if one asks, as Johnson and Leibovich & Randall did, 
for solutions q l (x ,  t )  which depend on the fast scale x and t only through the combina- 
tion 8 and a slow scale v x  or d,  then (1 .12b)  is an ordinary differential equation whose 
solution has the property that ql+  J?/3yrr ,as x and 8-t  - co. In  other words, if one 
simplifies ( l . 1 2 b )  by making the ansatz q = q(8 ,  m o r d ) ,  one looks at the problem 
from the frame of reference of the solitary wave, from which vantage point the shelf 
looks infinite, and one therefore loses information about the initial onset of the per- 
turbation. Thus the ansatz q = q(8 ,  u x  or crt) fails because, although the shelf amplitude 
is slowly varying, its range is not. It also fails a t  the point where q1 must make the 
reverse transition from - J?/3qo to zero. Near that point, and indeed away from the 
solitary wave, qo is asymptotically zero and q1 satisfies qlt + qlxxx = 0, which together 
with the local boundary conditions q1(x+ -co,t) = 0 ,  q l (x - t  +co,t) = - r /3ya  is 
satisfied by the integral of an Airy function, in fact, exactly (2 .5) .  However as we 
shall see in $52 and 3, for long times, account must be taken of the further evolution 
of the shelf after its initial creation; this will mean in fact that the second boundary 

condition on ql (x ,  t )  will be ql(x-+ 03, t )  = - (r/3q(O) cr) exp (-Ji r(.q ci8). One can 

calculate the position a t  which the reverse transition must occur by using the exact 
mass-balance equation (1.7 a).  

There is no doubt, then, that a direct perturbation can be successful, provided one 
understands a priori the nature of the solution. The important thing to check is 
whether the slow change of the soliton parameter (or parameters) can simultaneously 
satisfy all the conservation relations; in general, it will not. When it does not, the 

qot + 6qo qor + Pozxz  = 0, 

Qlt + 6qoq1, + 6q1 qos + q1ssx = - (1/4 r(t) Po, 
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solution will no longer be adiabatic; i.e. a slowly varying solitary wave. Nevert'heless, 
as we have seen, using a judicious combination of the perturbation equations and the 
conservation laws one can obtain the solution by direct methods. Indeed this is the only 
approach available if the problem is not exactly integrable in the first approximation. 
However, when it is, we emphasize that all these results appear quite naturally when 
one takes advantage of the exact integrability of the leading-order equation and 
inverse scattering theory. 

Furthermore, if qo(x, t )  is not simply a soliton but a more complicated solution of 
( 1 . 1 2 ~ ) )  then it is extremely difficult to find, by direct means, the appropriate basis for 
which the left-hand side of ( l . l 2 b ) ,  which is then a partial differential equation, 
separates. The answer is provided by inverse-scattering theory (Newell 1980), which 
tells us that the correct basis for expanding q l (x ,  t )  is 

which is adjoint to the set F = {$."(x, <), Creal; ($f, a$E/a<)r}, where $(r, c )  ($(x, 5 ) )  is 
the solution of ( 1 . 1 0 b )  which behaves as e-icx (e icx)  as x-+ -co (+a). Indeed multi- 
plying ( 1.12 b )  by $"x, 6, t ) ,  integrating over ( - 00, co) in x, using the expression 

sl.t = k o x  - 4iC3) sl. + (4C2 - 2qo) $x, 

for the time dependence of @, gives us exactly the expressions we would have obtained 
by the KN approach. Thus in order to separate the perturbed system, we are led back 
to the same expressions for the perturbed action-angle variables as we would have 
obtained using the KN method. 

Our second remark emphasizes the point that in the KN method no apriori ansatz is 
made concerning the solution structure. All we do is give the initial values of the action 
and angle variables (e.g. the amplitude and position of the soliton before the pertur- 
bation is switched on). Then, no matter how q(x,  t )  evolves, the scattering data S, 
see (1.10a), is always uniquely defined, the eigenfunctions $(x, t ,  5)  always computable 
in principle and q(x, t )  may be written down through (1.11). We stress that the struc- 
ture of the lcth soliton is given by q = - 4yk Ck The initial shape is 

q = 27; sech2yk(x - 5,) 

but one is not guaranteed that the soliton shape is always given by the hyperbolic 
secant. In the present case, the long-time behaviour of the solitary wave structure can 
be written as 27% sech2 rk(x - z k )  except that now Z k  is a modification of x k ,  the original 
angle variable. 

Finally we mention that the height of the reflected shelf has been calculated by 
Miles (1 979). 

2. Analytical results 
For t < 0, a soliton ( 1 . 2 )  with 7 = 7o travels unperturbed. At t = 0,  the soliton 

arrives at  x = 0 and the perturbation is switched on. Our goal is to monitor the subse- 
quent evolution of q(x, t )  to leading order. It is stressed that even though the shelf has 
amplitude of order I?, over long time it makes an order one contribution to both the 
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mass and first moment balance. By examining the change in the scattering data, KN 
found to leading order that 

Tt = --gr7, ( 2 . 1 ~ )  

zt = 472+o(r),  ( 2 . l b )  

where 2 is a measure of the position of the solitary wave (e.g. the position of its 
maximum). 

As already mentioned, the interaction of the soliton with the perturbation give rise 
to a resonance which leads to a non-decaying component of the solution connected 
with the continuous spectrum. Indeed for order one times, KN found that this con- 
tribution (calculated by using (1.11)) is given by 

4 2 5 )  (2.2) 
r sin 25(x - 2 )  -sin 2<(x + 45%) 

25 
qc(x, t )  = - tanh2 ~ ( x  - 2 )  

6,P I,, x/(3t)' Ai(s)ds], (2.3) 

3 
r 

6n7 
= -tanh2q(x-2) nsgn (x- 2 )  - - - ZT 

where sgn (2) = i for x 2 0, sgn (x) = - i for x < 0. For x > P > 0, the term in the 
brackets is zero. For 0 < x < P (and for those x where tanh27(x-P) N l), 

forx < 0, 

Thus between x = 0 and x = 2,  the position of the solitary wave, a shelf of height 
- r/37 is created. At both x = 0 and x = P the transitions to the respective solitary 
wave and zero states are smooth. KN pointed out how this shelf accounts for the rate of 
the extra mass created (I? < 0; depth-decreasing case) per unit distance, mass which is 
not absorbed by the amplifying soliton: 

= - 4r(47) -9r(47) = - r(471, 

the exact result. However as pointed out by the authors (Newell 1978; this point has 
also been noted by Miles 1979) the calculation of shelf height for times l/r is only 
valid immediately behind the solitary wave. The subsequent evolution of the shelf is 
most easily calculated from (1.1) directly; the nonlinear and dispersion terms are 

negligible. Then a t  ,?when the solitary wave is a t  2(t)  = 4q2dt, the height of the shelf 

qc(z, f )  a t  the point x is 

= 0 otherwise, 

where t = t(x) through the integration of xt = 472. Our numerical results presented in 
9 3 agree almost precisely with this formula. 
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Let us now see how these approximations allow us to balance the exact relations 
( 1 . 7 ~ )  and ( 1 . 7  c )  almost precisely. To leading order, the mass in the shelf is given by 

M,(t") = q , ( x , t ) d x .  f 
By using (2.6) and the transformation x = 4y2dt on ( 2 . 7 ) ,  we find 1: 

( 2 . 7 ~ )  

( 2 . 7 b )  

But the last term is simply M,(t) = qJx) t " )  dx, the mass in the solitary wave, and 

thus to leading order 

the exact result. A similar calculation can be carried out for G(t"). When I' is constant 
it can be done explicitly. We find, again to leading order, that 

G ( f )  = ( - 167;/I') exp ( - rt) [exp ( - rt) - 11, ( 2 . 9 )  

which is the exact result ( 1.7 c ) ,  

waves. Integration of (2.1) gives 
Finally we mention the consequences of these results in the context of shallow water 

7/70 = (DO/D)Q) (2.10) 

$ehr,$ D$ /D.  ( 2 . 1  1)  
whence the  soliton amplitude is 

Thus the solitary wave amplitude is inversely proportional to the depth. On the other 
hand the shelf height (here it is convenient to express the height as a function of t ,  
which in the water wave case measures position, and t the present position of the solitary 
wave) is jehD2(t) q,(x(t), f), which, using (2.6) with I' = + 9Dt / (4D) ,  is 

Dt( t )  1 
- 3~hD' - - 

Di(t")' 
( 2 . 1 2 )  

which is inversely proportional to the fourth root of the depth estimated at the present 
solitary wave position. D' refers to the derivative of the depth with respect to the 
argument d X / h .  
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3. Numerical results 
In  order to verify the theoretical predictions, we numerically simulated the differ- 

ential equation (1.1). For a number of reasons we chose an explicit finite-difference 
scheme suggested by Vliegenthart (1971). This scheme discretizes the components of 
(1.1) by 

q(j9n+1)-q(j ,  n- 
+ O((At)2), 24t qt = 

where t = n At and x = j Ax. 
We define r(t) = -ft(t)/f(t) and we will present the results of two numerical cases. 

Case (i) consists of definingf(t) = eUt so that r(t) = -CT = constant. For this case the 
computations used CT = -& and considered times 0 < t < 100. For case (ii) we took 
f ( t )  = d -  1, yielding r(t) = - v / (d  - 1).  In  these computations we chose CT = & and 
looked at  times 0 < t < 40. The choice of case (ii) is of interest because of its potential 
applicability as a model to the problem of an internal solitary wave travelling on a 
thermocline in the neighbourhood of the point where the coefficient of the nonlinear 
terms vanishes (approximately where the depths of the upper and lower layers are 
equal). 

The time at  which the perturbation procedure breaks down is when I ' /37, the 
shelf height, is of the same order as the amplitude 2 ~ ~ .  For case (i) this occurs when t is 
O(ln / ~ I / C T ) ,  which for CT = - & is approximately 100 time units. We monitored times 
up to 100 time units for case (i) and did not observe any divergence between the 
numerical and perturbation results. For case (ii), the breakdown occurs when time is 
cr-l-O(u-*), which for CT =& is approximately 33 time units. After this time we 
noticed that the perturbation solution began to diverge from the numerical solution. 

Figure 1 gives an overall picture of the total motion of the system. The major 
features of the solution are: ( a )  a slightly distorted solitary wave, ( b )  the formation of 
the shelf, its finite range and its subsequent evolution and (c) the decaying oscillatory 
tail. Figure 1 shows the numerical solution for all x at five different times t .  

In  order to check on the accuracy of the numerical results, we continuously moni- 
tored the values of the total mass, energy and the centre of gravity and compared the 
numerical results with the exact relations (1 .7) .  First, with r(t) = -ft(t)/f(t) the mass 
is given by the relation 

Second, the energy is given by 

and, third, the centre of gravity is defined by 
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t = O  

-10 0 10 20 30 40 50 60 70 
Distance x 

FIGURE 1. Numerical solution at five time levels t = 0, 5, 10, 20, 30. The curves shown graph the 
distance T ( -  10 < x < 70) versus the scaled amplitude (q(r, t ) / 2 r ] t ) t .  

Case (i) Case (ii) 

Mass 0.0003 yo 0.48 yo 
Energy 1.9 yo 2.28 yo 
Centre of gravity 0.7 yo 1.07 Yo 

TABLE 1. The maximum error obtained in comparing the numerical results to the exact results, 
over the intervals (if 0 < t < 100 and (ii) 0 < t < 32. 

As the table 1 indicates, we obtained very close agreement with the exact results, 
which is to be anticipated since the Vliegenthart scheme is designed to conserve both 
mass and energy in the unperturbed equation. 

Having established the accuracy of the numerical results, we now compare them 
with the results of the perturbation theory. 

In  analysing the solitary wave portion of the perturbation solution, two features 
were checked numerically, the amplitude and the position. The amplitude evolution 
as derived from the perturbation theory is given by 

272 = 27; Ifla. (3.5) 

Figure 2 gives a graphical representation of the comparison of the numerical results 
and (3.5) for case (i). The comparison shown in figure 2 yields a maximum error of 3 yo. 

The second feature of the solitary wave examined is its position, which, to leading 
order, is given by 



812 C .  J .  Knickerbocker and A .  C .  Newell 

I I I I I I I I I I 
0 5 10 15 20 25 30 35 40 45 50 

Time t 

FIGURE 2. Numerical solution (-0-) versus perturbation theory (-) for the amplitude 
variation of the solitary wave. The results graph the amplitude (0 < q(z, t )  < 2) versus time 
(0 < t < 50) for case (i). 

The comparison between the integration of (3.6) and the numerical results for case (i) 
is given in figure 3. 

Before we proceed there are two points to be made concerning the results shown in 
figure 3. First, from the numerical experiment, one observes that the solitary wave 
slows down and stops. Remarkably the integration of (3.6), 

x ( f )  = ( + 37;/r) (1 - exp ( -$IT)), 

follows the entire experimental trajectory of the solitary wave maximum to within 
2 yo, which is of order r. We say remarkably, for one might expect the approximate 
solution to be valid only for times when t < r-l In r-l when - F/37, the shelf height, 
is much less than 272, the soliton amplitude. Second, we note in figure 3 that the 
difference between theory and numerical experiment for the trajectory of the centre 
of gravity g = (47:/1‘) ( 1  - exp ( - IT)) is less than 0-7 %, In  view of the fact that the 

approximate theory follows both q d x  and zqdx so closely (cf. (2.8) and (2.9)), s”, 
it is not surprising that g ( t )  can be followed so closely. 

(ii) is given in figure 4. The maximum error for case (ii) was 2.3 yo. 

and again the numerical and perturbation results were extremely close. 

The comparison between the integration of (3.6) and the numerical results for case 

The second major feature of the general solution which we checked was the shelf 
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FIGURE 3. Numerical solution (-0-) versus perturbation theory (-) for the soliton position. 
Numerical solution ( A )  versus perturbation theory (----) for the centre of gravity. The results 
graph distance (0 < x < 160) versus time (0 < t < 140) for case (i). 

Distance x 

FIGURE 4. Numerical solution (-O-) versus perturbation theory (-) for soliton position. 
The results graph distance (0 < z < 70) versus time (0 < t < 40) for cam (ii). 
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-12 

-14 
0 10 20 

Distance x 

FIGURE 5. Numerical solution (-0-) versus perturbation theory (-) for shelf amplitude. The 
curves relate distance (0 < z < 70) and amplitude ( - 14 x 10-3 < q < 0) for case (i) at  t = 27.75 
time units. The dashed line (----) represents the maximum amplitude of the shelf for each 
point z. This maximum occurs at t = t c ( x )  the creation time of the shelf at the point x. The rear 
portion of the solitary wave may be seen at the right of the figure. 

From (2.6) with r(t) = -ft(t)/f(t), we find 

(3 .7)  

where f measures the current time and t,(x) represents the time a t  which the shelf was 
created a t  each point x .  By writing the creation time as a function of x through the 
integration of (3.6) we arrived at the following results. For case (i), ( 3 . 7 )  yields 

where T~ = ~ ( t  = 0). 
Similarly for case (ii), it is easy to verify that 

In  figure 5 we look a t  an enlarged version of the solution for case (i) a t  f = 27 time 
units, and we focus our attention on the shelf portion of that  solution. The dashed line 
just below the shelf represents the maximum amplitude of the shelf a t  each point x. 
This maximum, which is - I ’ ( tc ) /3y( t , ) ,  occurs a t  the time of its creation. The numerical 
results agree almost precisely with the perturbation results given by ( 3 . 8 )  and (3 .9 ) ,  
and the comparison is equally good a t  all other times. 

In order to study further the formation and evolution of the shelf, we focused our 
attention on several positions and monitored the evolution of the shelf a t  those points. 
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FIGURE 6. Numerical solution (-0 -) versus perturbation theory (--) for shelf amplitude. 
The results which are quoted at x = 0 (initial soliton position), T = 36, and T = 72, graph shelf 
amplitude ( -  15.0 x 10-8 < Q(T ,  t )  < 0) versus time (0 < t < 100) for case (i). The rear portion 
of the solitary wave appears at the left of the figure. 

FIGURE 7. 
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Numerical solution (-0 -) versus perturbation theory (-) for shelf amplitude. 
The results which are quoted at z = 0 (initial soliton position) and T = 16 graph shelf ampli- 
tude ( -  12.0 x < q(z, t )  < 2 x versus time (0 < t < 40) for case (ii). The rear portion 
of the solitary wave appears at the left of the figure. 
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FIUURE 8. Numerical solution (-0 -) versus perturbation theory (---) for oscillatory tail. The 
results graph tail amplitude ( - 5.0 x verms distance ( -  40 < z < 0) 
for cme (i) at f = 7 time units. 

< Q(T, t )  < 5.0 x 

Figures 6 and 7 show in detail the evolution of the shelf after its initial formation and 
the perturbation and numerical results agree almost precisely. Although the slight 
differences between theory and experiment fall within the range of the numerical error, 
there is some suggestion of long waves propagating along the shelf from the solitary 
wave. 

The results shown in figure 7 which are for case (ii) are qualitatively the same as 
case (i). 

We also checked case (i) with (T = +&, the amplified case corresponding to an 
upward-facing shelf. After checking (3.8) against the numerical results we again found 
close agreement. Note that while the shelf amplitude decreases with x ( -  r/37 (t,) 
decreases with x), nevertheless at  each point the shelf eventually grows with time (see 
(2.6), (3.8), with (T = +&). We remind the reader that the result (3.8) for the shelf is 
obtained by the balance qt = cq. Both qqz and qxzx are of smaller order. However, as the 
shelf grows, the nonlinear term again becomes important and indeed the shelf will 
begin to break and form order-one spatial derivatives on the time scale r1 In v-l. A t  
this stage the dispersion becomes important; the shelf breaks into a solitary wave 
train, each pulse of which is weakly amplified by the gq term. 

The last major portion of the solution considered was the oscillatory tail. This tail 
can be viewed in figure 1 for various time levels. In  figure 8 we show a more detailed 
comparison of the perturbation results (2.3) and the numerical results for case (i) at  
t = 7 time units. The amplitude r/37 in (2.3) has been adj usted to tlhe value 
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inlinewith(2.6)and (3.7); thatis - 

(3.10) 

The phase of the theoretical solution is not known exactly (the discrepancy is of the 
order of the width of the solitary wave) due to  the lack of precise information as to 
where the shelf is formed with respect to the solitary wave. Therefore within this 
latitude we have chosen the phase of the theoretical solution (2.3) so that it agrees with 
the numerical solution at  the point where the oscillatory tail attaches to the shelf. We 
believe that the slight remaining discrepancy between the theory and numerical 
experiment is due to the presence of very low-amplitude long waves which are con- 
tinuously created at  the solitary wave. As already noted some evidence €or these waves 
is seen in figures 5-7. Indeed, a very careful examination of the time dependence in the 
oscillatory tail seems to indicate the presence of these long waves. However our present 
numerical scheme is not sufficiently accurate to study this very small effect in further 
detail. 

The authors are grateful to NSF (MCS75-07548 A01) and ONR (N00014-764-0867) 
for support. 
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